L-ordered and L-lattice ordered groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33155765" target="_blank" >RIV/61989592:15310/15:33155765 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0020025515002455" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0020025515002455</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2015.03.072" target="_blank" >10.1016/j.ins.2015.03.072</a>
Alternative languages
Result language
angličtina
Original language name
L-ordered and L-lattice ordered groups
Original language description
This paper pursues an investigation on groups equipped with an L-ordered relation, where L is a fixed complete Heyting algebra. First, by the concept of join and meet on an L-ordered set, the notion of an L-lattice (a weak L-lattice) is introduced and some related results are obtained. Then we applied them to define an L-lattice ordered group. We also introduce convex L-subgroups to construct a quotient L-ordered group. At last, a relation between the positive cone of an L-ordered group and special typeof elements of LG is found, where G is a group.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information Sciences
ISSN
0020-0255
e-ISSN
—
Volume of the periodical
314
Issue of the periodical within the volume
SEP
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
118-134
UT code for WoS article
000355050200008
EID of the result in the Scopus database
—