On the existence and properties of three types of solutions of singular IVPs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33157638" target="_blank" >RIV/61989592:15310/15:33157638 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27600/15:86095274
Result on the web
<a href="http://www.math.u-szeged.hu/ejqtde/p3714.pdf" target="_blank" >http://www.math.u-szeged.hu/ejqtde/p3714.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14232/ejqtde.2015.1.29" target="_blank" >10.14232/ejqtde.2015.1.29</a>
Alternative languages
Result language
angličtina
Original language name
On the existence and properties of three types of solutions of singular IVPs
Original language description
The paper studies the singular initial value problem on the half-line, where the nonlinearity has three zeros and the coefficient functions p, q are continuous and positive on (0,infinity) and p(0) = 0. The paper describes a set of all solutions of the given problem. Existence results and properties of oscillatory solutions and increasing solutions are derived. By means of these results, the existence of an increasing solution tending to L (a homoclinic solution) playing an important role in applications is proved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
2015
Issue of the periodical within the volume
29
Country of publishing house
HU - HUNGARY
Number of pages
25
Pages from-to
1-25
UT code for WoS article
000356785000001
EID of the result in the Scopus database
—