Homoclinic solutions of singular differential equations with phi-Laplacian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73587808" target="_blank" >RIV/61989592:15310/18:73587808 - isvavai.cz</a>
Result on the web
<a href="http://www.math.u-szeged.hu/ejqtde/p6662.pdf" target="_blank" >http://www.math.u-szeged.hu/ejqtde/p6662.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14232/ejqtde.2018.1.72" target="_blank" >10.14232/ejqtde.2018.1.72</a>
Alternative languages
Result language
angličtina
Original language name
Homoclinic solutions of singular differential equations with phi-Laplacian
Original language description
A singular nonlinear initial value problem (IVP) with a phi-Laplacian is investigated on the half-line. Here, function phi is smooth and increasing on R with phi(0) = 0, function f is locally Lipschitz continuous with three zeros f(L0) < 0 < f(L), function p is smooth and increasing. The problem is singular in the sense that p(0) = 0 and 1/p(t) may not be integrable on [0, 1]. The main result of the paper is the existence of homoclinic solutions defined as nondecreasing solutions of the IVP going to L.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-06958S" target="_blank" >GA14-06958S: Singularities and impulses in boundary value problems for nonlinear ordinary differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
2018
Issue of the periodical within the volume
72
Country of publishing house
HU - HUNGARY
Number of pages
19
Pages from-to
1-19
UT code for WoS article
000443337100001
EID of the result in the Scopus database
2-s2.0-85053719476