All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33155667" target="_blank" >RIV/61989592:15310/16:33155667 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0034425715302327" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0034425715302327</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rse.2015.12.011" target="_blank" >10.1016/j.rse.2015.12.011</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves.

  • Original language description

    There are many studies showing the active optical reaction of a green leaf to the changing surroundings based on chloroplast movement and their rearrangement in plant cells. These studies concentrated mostly on the effect of one feature (leaf type, leaf side or light type) on the leaf optical spectra. We have measured the diffuse reflectance and transmittance spectra of tobacco green leaves in combination of 4 variants: in normal and water infiltrated leaves, in collimated or diffuse incident light, on both the adaxial and abaxial leaf sides, and for the face or side chloroplast arrangement. A Simple Explicitly Non-Linear Empirical model for Leaf Optical Properties (SENLELOP model) is used to theoretically describe, simulate and fit the deviations from the Lambert-Beer's law causing nonlinearity in the measured spectral changes. It is shown that the incident diffuse light is captured by the leaf more effectively than the collimated light. The light incident from the adaxial leaf side is more effectively absorbed than the same light incident from the abaxial leaf side. The air in intercellular spaces of natural leaf increases about twice the beam path and strongly deepens the non-linearity of the absorption process when compared with water infiltrated leaf. The chloroplast arrangement in the palisade cells is reflected in most of the studied differences. The leaf absorbance changed in our case of tobacco leaves up to 30% when the chloroplasts moved from the face to the side position. This change depends strongly on the wavelength and quite slightly on the character of incident light. Further analysis predicts that in practice the effect of chloroplast rearrangement on the reflectance spectra is in dependence on the wavelength of the light about 2-5% in our case of fully developed green leaves but can be higher in some cases. Thus it can affect values of some of the indices used in the remote sensing.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BO - Biophysics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LO1204" target="_blank" >LO1204: Sustainable development of research in the Centre of the Region Haná</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Remote Sensing of Environment

  • ISSN

    0034-4257

  • e-ISSN

  • Volume of the periodical

    174

  • Issue of the periodical within the volume

    MAR

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    181-196

  • UT code for WoS article

    000368746800014

  • EID of the result in the Scopus database