Simplicial principal component analysis for density functions in Bayes spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33159835" target="_blank" >RIV/61989592:15310/16:33159835 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0167947315001644" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0167947315001644</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csda.2015.07.007" target="_blank" >10.1016/j.csda.2015.07.007</a>
Alternative languages
Result language
angličtina
Original language name
Simplicial principal component analysis for density functions in Bayes spaces
Original language description
Probability density functions are frequently used to characterize the distributional properties of large-scale database systems. As functional compositions, densities primarily carry relative information. As such, standard methods of functional data analysis (FDA) are not appropriate for their statistical processing. The specific features of density functions are accounted for in Bayes spaces, which result from the generalization to the infinite dimensional setting of the Aitchison geometry for compositional data. The aim is to build up a concise methodology for functional principal component analysis of densities. A simplicial functional principal component analysis (SFPCA) is proposed, based on the geometry of the Bayes space B2 of functional compositions. SFPCA is performed by exploiting the centred log-ratio transform, an isometric isomorphism between B2 and L2 which enables one to resort to standard FDA tools. The advantages of the proposed approach with respect to existing techniques are demonstrated using simulated data and a real-world example of population pyramids in Upper Austria.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-06991S" target="_blank" >GA15-06991S: Functional data analysis and related topics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Statistics and Data Analysis
ISSN
0167-9473
e-ISSN
—
Volume of the periodical
94
Issue of the periodical within the volume
FEB
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
330-350
UT code for WoS article
000364798200023
EID of the result in the Scopus database
—