Note on essential fixed points of approximable multivalued mappings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33160256" target="_blank" >RIV/61989592:15310/16:33160256 - isvavai.cz</a>
Result on the web
<a href="http://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-016-0568-6" target="_blank" >http://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-016-0568-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13663-016-0568-6" target="_blank" >10.1186/s13663-016-0568-6</a>
Alternative languages
Result language
angličtina
Original language name
Note on essential fixed points of approximable multivalued mappings
Original language description
A new definition of essential fixed points is introduced for a large class of multivalued maps. Two abstract existence theorems are presented for approximable maps on compact ANR-spaces in terms of a nontrivial fixed point index, or a nontrivial Lefschetz number and a zero topological dimension of the fixed point set. The second one is applied to the periodic dissipative Marchaud differential inclusions for obtaining the existence of a discretely essential subharmonic solution. Three simple illustrative examples are supplied.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-06958S" target="_blank" >GA14-06958S: Singularities and impulses in boundary value problems for nonlinear ordinary differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fixed Point Theory and Applications
ISSN
1687-1820
e-ISSN
—
Volume of the periodical
2016
Issue of the periodical within the volume
78
Country of publishing house
DE - GERMANY
Number of pages
13
Pages from-to
1-13
UT code for WoS article
—
EID of the result in the Scopus database
—