Generalization of C^{1,1} Property in Infinite Dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33160520" target="_blank" >RIV/61989592:15310/16:33160520 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007/s40306-015-0129-9" target="_blank" >http://link.springer.com/article/10.1007/s40306-015-0129-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40306-015-0129-9" target="_blank" >10.1007/s40306-015-0129-9</a>
Alternative languages
Result language
angličtina
Original language name
Generalization of C^{1,1} Property in Infinite Dimension
Original language description
The class of functions with locally Lipschitz gradient, i.e., the class of C^{1,1} functions, has been deeply studied and many optimization conditions has been stated for this class. A generalization of C^{1,1} property leads to the class of l-stable functions. In this paper, we study two formally different definitions of l-stability in infinite dimension and show their equivalence.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Vietnamica
ISSN
0251-4184
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
2
Country of publishing house
VN - VIET NAM
Number of pages
11
Pages from-to
265-275
UT code for WoS article
000387052800006
EID of the result in the Scopus database
—