Lexicographic effect algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33161648" target="_blank" >RIV/61989592:15310/16:33161648 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00012-016-0374-3" target="_blank" >http://link.springer.com/article/10.1007%2Fs00012-016-0374-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-016-0374-3" target="_blank" >10.1007/s00012-016-0374-3</a>
Alternative languages
Result language
angličtina
Original language name
Lexicographic effect algebras
Original language description
We investigate a class of effect algebras that can be represented in the form , (u, 0)), where means the lexicographic product of an Abelian unital po-group (H, u) and an Abelian directed po-group G. We study conditions when an effect algebra is of this form. Fixing a unital po-group (H, u), the category of strongly (H, u)-perfect effect algebras is introduced and it is shown that it is categorically equivalent to the category of directed po-groups with interpolation. We prove some representation theorems of lexicographic effect algebras, including a subdirect product representation by antilattice lexicographic effect algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-15286S" target="_blank" >GA15-15286S: Algebraic, many-valued and quantum structures for uncertainty modelling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
75
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
30
Pages from-to
451-480
UT code for WoS article
000378814200005
EID of the result in the Scopus database
—