Hyper effect algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73579363" target="_blank" >RIV/61989592:15310/17:73579363 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0165011416304535" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0165011416304535</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2016.12.012" target="_blank" >10.1016/j.fss.2016.12.012</a>
Alternative languages
Result language
angličtina
Original language name
Hyper effect algebras
Original language description
We present hyper effect algebras as a generalization of effect algebras. The result of the hyper summation of two mutually excluding events is not an element of the algebra but rather a subset (not necessarily a singleton) of the algebra. We present basic notions like states on hyper effect algebras. We present two standard examples of hyper effect algebras starting from effect algebras. We show how we can effectively generate finite models of hyper effect algebras and we point out problems with associativity. Finally, we provide a representation of any finite linearly ordered hyper effect algebra. © 2016 Elsevier B.V.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-15286S" target="_blank" >GA15-15286S: Algebraic, many-valued and quantum structures for uncertainty modelling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
326
Issue of the periodical within the volume
SI
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
34-51
UT code for WoS article
000412264700004
EID of the result in the Scopus database
2-s2.0-85008681208