Isomorphism theorems on generalized effect algebras based on atoms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00035885" target="_blank" >RIV/00216224:14310/09:00035885 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Isomorphism theorems on generalized effect algebras based on atoms
Original language description
A well-known fact is that every generalized effect algebra can be uniquely extended to an effect algebra in which it becomes a sub-generalized effect algebra and simultaneously a proper order ideal, the set-theoretic complement of which is its dual poset. We show that two non-isomorphic generalized effect algebras (even finite ones) may have isomorphic effect algebraic extensions. For Archimedean atomic lattice effect algebras we prove "Isomorphism theorem based on atoms". As an application we obtain necessary and sufficient conditions for isomorphism of two prelattice Archimedean atomic generalized effect algebras with common (or isomorphic) effect algebraic extensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INFORMATION SCIENCES
ISSN
0020-0255
e-ISSN
—
Volume of the periodical
179
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
—
UT code for WoS article
000262768400008
EID of the result in the Scopus database
—