Sharkovsky-type theorems on S1 Applicable to Differential Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73580371" target="_blank" >RIV/61989592:15310/17:73580371 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0218127417500420" target="_blank" >http://dx.doi.org/10.1142/S0218127417500420</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218127417500420" target="_blank" >10.1142/S0218127417500420</a>
Alternative languages
Result language
angličtina
Original language name
Sharkovsky-type theorems on S1 Applicable to Differential Equations
Original language description
"Period three implications" are investigated for a large class of multivalued maps on the circle. The obtained Sharkovsky-Block-Siegberg type theorem is then applied to differential equations and inclusions for the coexistence of infinitely many derivo-periodic solutions with various periods, sometimes called subharmonic solutions of the second kind. These deterministic results are also randomized. Several illustrative examples are supplied.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-06958S" target="_blank" >GA14-06958S: Singularities and impulses in boundary value problems for nonlinear ordinary differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
ISSN
0218-1274
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
3
Country of publishing house
SG - SINGAPORE
Number of pages
21
Pages from-to
1-21
UT code for WoS article
000399165800016
EID of the result in the Scopus database
—