All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Note on limit-periodic solutions of the difference equation x t 1 -[h(xt) l] xt = r t , λ > 1

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73595053" target="_blank" >RIV/61989592:15310/19:73595053 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2075-1680/8/1/19/htm" target="_blank" >https://www.mdpi.com/2075-1680/8/1/19/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/axioms8010019" target="_blank" >10.3390/axioms8010019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Note on limit-periodic solutions of the difference equation x t 1 -[h(xt) l] xt = r t , λ > 1

  • Original language description

    As a nontrivial application of the abstract theorem developed in our recent paper titled &quot;Limit-periodic solutions of difference and differential systems without global Lipschitzianity restricitions&quot;, the existence of limit-periodic solutions of the difference equation from the title is proved, both in the scalar as well as vector cases. The nonlinearity h is not necessarily globally Lipschitzian. Several simple illustrative examples are supplied.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Axioms

  • ISSN

    2075-1680

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

    "19-1"-"19-10"

  • UT code for WoS article

    000464068800001

  • EID of the result in the Scopus database

    2-s2.0-85063859786