Note on limit-periodic solutions of the difference equation x t 1 -[h(xt) l] xt = r t , λ > 1
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73595053" target="_blank" >RIV/61989592:15310/19:73595053 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2075-1680/8/1/19/htm" target="_blank" >https://www.mdpi.com/2075-1680/8/1/19/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/axioms8010019" target="_blank" >10.3390/axioms8010019</a>
Alternative languages
Result language
angličtina
Original language name
Note on limit-periodic solutions of the difference equation x t 1 -[h(xt) l] xt = r t , λ > 1
Original language description
As a nontrivial application of the abstract theorem developed in our recent paper titled "Limit-periodic solutions of difference and differential systems without global Lipschitzianity restricitions", the existence of limit-periodic solutions of the difference equation from the title is proved, both in the scalar as well as vector cases. The nonlinearity h is not necessarily globally Lipschitzian. Several simple illustrative examples are supplied.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Axioms
ISSN
2075-1680
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
10
Pages from-to
"19-1"-"19-10"
UT code for WoS article
000464068800001
EID of the result in the Scopus database
2-s2.0-85063859786