On the Lipschitz behavior of solution maps of a class of differential inclusions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F15%3A00453288" target="_blank" >RIV/67985556:_____/15:00453288 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11228-015-0323-x" target="_blank" >http://dx.doi.org/10.1007/s11228-015-0323-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11228-015-0323-x" target="_blank" >10.1007/s11228-015-0323-x</a>
Alternative languages
Result language
angličtina
Original language name
On the Lipschitz behavior of solution maps of a class of differential inclusions
Original language description
We consider a general differential inclusion which is parameterized by a parameter. We perform time discretization and present conditions under which the discretized solution map is locally Lipschitz. Further, if the Lipschitzian modulus is bounded in some sense, we show that it is possible to obtain the local Lipschitzian property even for the original (not discretized) solution map. We conclude the paper with an example concerning stability analysis of nonregular electrical circuits with ideal diodes.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0671" target="_blank" >GAP201/12/0671: Variational and numerical analysis in nonsmooth continuum mechanics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Set-Valued and Variational Analysis
ISSN
1877-0533
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
559-575
UT code for WoS article
000359144900010
EID of the result in the Scopus database
2-s2.0-84958535713