All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583831" target="_blank" >RIV/61989592:15310/17:73583831 - isvavai.cz</a>

  • Result on the web

    <a href="http://mat76.mat.uni-miskolc.hu/mnotes/download_article/1978.pdf" target="_blank" >http://mat76.mat.uni-miskolc.hu/mnotes/download_article/1978.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18514/MMN.2017.1978" target="_blank" >10.18514/MMN.2017.1978</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors

  • Original language description

    In this paper we study the preserving of Riemannian and Ricci tensors with respect to a diffeomorphism of spaces with affine connection. We consider geodesic and almost geodesic mappings of the first type. The basic equations of these maps form a closed system of Cauchy type in covariant derivatives. We determine the quantity of essential (substantial) parameters on which the general solution of this problem depends.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Miskolc Mathematical Notes

  • ISSN

    1787-2405

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    8

  • Pages from-to

    117-124

  • UT code for WoS article

    000406745600010

  • EID of the result in the Scopus database