Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583831" target="_blank" >RIV/61989592:15310/17:73583831 - isvavai.cz</a>
Result on the web
<a href="http://mat76.mat.uni-miskolc.hu/mnotes/download_article/1978.pdf" target="_blank" >http://mat76.mat.uni-miskolc.hu/mnotes/download_article/1978.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18514/MMN.2017.1978" target="_blank" >10.18514/MMN.2017.1978</a>
Alternative languages
Result language
angličtina
Original language name
Diffeomorphism of affine connected spaces which preserved Riemannian and Ricci curvature tensors
Original language description
In this paper we study the preserving of Riemannian and Ricci tensors with respect to a diffeomorphism of spaces with affine connection. We consider geodesic and almost geodesic mappings of the first type. The basic equations of these maps form a closed system of Cauchy type in covariant derivatives. We determine the quantity of essential (substantial) parameters on which the general solution of this problem depends.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Miskolc Mathematical Notes
ISSN
1787-2405
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
8
Pages from-to
117-124
UT code for WoS article
000406745600010
EID of the result in the Scopus database
—