Diverse responses of wild and cultivated tomato to BABA, oligandrin and Oidium neolycopersici infection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73584269" target="_blank" >RIV/61989592:15310/17:73584269 - isvavai.cz</a>
Alternative codes found
RIV/61389030:_____/17:00476562 RIV/00216224:14310/17:00095531
Result on the web
<a href="https://academic.oup.com/aob/article/119/5/829/2669388" target="_blank" >https://academic.oup.com/aob/article/119/5/829/2669388</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/aob/mcw188" target="_blank" >10.1093/aob/mcw188</a>
Alternative languages
Result language
angličtina
Original language name
Diverse responses of wild and cultivated tomato to BABA, oligandrin and Oidium neolycopersici infection
Original language description
Current strategies for increased crop protection of susceptible tomato plants against pathogen infections include treatment with synthetic chemicals, application of natural pathogen-derived compounds or transfer of resistance genes from wild tomato species within breeding programmes. In this study, a series of 45 genes potentially involved in defence mechanisms was retrieved from the genome sequence of inbred reference tomato cultivar Solanum lycopersicum 'Heinz 1706'. The aim of the study was to analyse expression of these selected genes in wild and cultivated tomato plants contrasting in resistance to the biotrophic pathogen Oidium neolycopersici , the causative agent of powdery mildew. Plants were treated either solely with potential resistance inducers or by inducers together with the pathogen. The resistance against O. neolycopersici infection as well as RT-PCR-based analysis of gene expression in response to the oomycete elicitor oligandrin and chemical agent β-aminobutyric acid (BABA) were investigated in the highly susceptible domesticated inbred genotype Solanum lycopersicum 'Amateur' and resistant wild genotype Solanum habrochaites . Differences in basal expression levels of defensins, germins, β-1,3-glucanases, heveins, chitinases, osmotins and PR1 proteins in non-infected and non-elicited plants were observed between the highly resistant and susceptible genotypes. Moreover, these defence genes showed an extensive up-regulation following O. neolycopersici infection in both genotypes. Application of BABA and elicitin induced expression of multiple defence-related transcripts and, through different mechanisms, enhanced resistance against powdery mildew in the susceptible tomato genotype. The results indicate that non-specific resistance in the resistant genotype S. habrochaites resulted from high basal levels of transcripts with proven roles in defence processes. In the susceptible genotype S. lycopersicum 'Amateur', oligandrin- and BABA-induced resistance involved different signalling pathways, with BABA-treated leaves displaying direct activation of the ethylene-dependent signalling pathway, in contrast to previously reported jasmonic acid-mediated signalling for elicitins.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
<a href="/en/project/GAP501%2F12%2F0590" target="_blank" >GAP501/12/0590: Characterisation of processes involved in induction of plant resistance to pathogens using elicitins with altered ability to trigger defence reaction</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Botany
ISSN
0305-7364
e-ISSN
—
Volume of the periodical
119
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
829-840
UT code for WoS article
000400982600012
EID of the result in the Scopus database
—