On a topological fuzzy fixed point theorem and its application to non-ejective fuzzy fractals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73587812" target="_blank" >RIV/61989592:15310/18:73587812 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011417303585" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011417303585</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2017.10.001" target="_blank" >10.1016/j.fss.2017.10.001</a>
Alternative languages
Result language
angličtina
Original language name
On a topological fuzzy fixed point theorem and its application to non-ejective fuzzy fractals
Original language description
A topological fuzzy fixed point theorem is given, when generalizing and improving the main result by Diamond, Kloeden and Pokrovskii (1997) [1]. Apart from the sole existence, a weak local stability property, called non-ejectivity in the sense of Browder, of fuzzy fixed points is established. This theorem is then applied for obtaining non-ejective fuzzy fractals. An alternative approach via the Knaster–Tarski theorem is also presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-06958S" target="_blank" >GA14-06958S: Singularities and impulses in boundary value problems for nonlinear ordinary differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
350
Issue of the periodical within the volume
NOV
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
95-106
UT code for WoS article
000444234800007
EID of the result in the Scopus database
2-s2.0-85030646683