On a topological fuzzy xed point theorem and its application to non-ejective fuzzy fractals II
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73594944" target="_blank" >RIV/61989592:15310/19:73594944 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S016501141830695X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S016501141830695X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2018.09.013" target="_blank" >10.1016/j.fss.2018.09.013</a>
Alternative languages
Result language
angličtina
Original language name
On a topological fuzzy xed point theorem and its application to non-ejective fuzzy fractals II
Original language description
This paper deals mainly with new very general fuzzy fixed point theorems in metric spaces and their application to fuzzy fractals. It is a natural continuation of our paper (2018) which significantly generalizes and improves the results by Diamond, Kloeden and Pokrovskii (1997), where no application was given. Moreover, besides the existence, some further important properties of fixed point sets (in particular, fractals) like their weak local stability, called none-ejectivity in the sense of Browder (1965), will be established.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
370
Issue of the periodical within the volume
SEP
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
79-90
UT code for WoS article
000470824100004
EID of the result in the Scopus database
2-s2.0-85054003769