Morphisms on EMV-algebras and their applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73589840" target="_blank" >RIV/61989592:15310/18:73589840 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs00500-018-3039-7" target="_blank" >https://link.springer.com/article/10.1007%2Fs00500-018-3039-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-018-3039-7" target="_blank" >10.1007/s00500-018-3039-7</a>
Alternative languages
Result language
angličtina
Original language name
Morphisms on EMV-algebras and their applications
Original language description
For a new class of algebras, called EMV-algebras, every idempotent element a determines an MV-algebra which is important for the structure of the EMV-algebra. Therefore, instead of standard homomorphisms of EMV-algebras, we introduce EMV-morphisms as a family of MV-homomorphisms from MV-algebras [0, a] into other ones. EMV-morphisms enable us to study categories of EMV-algebras where objects are EMV-algebras and morphisms are special classes of EMV-morphisms. The category is closed under product. In addition, we define free EMV-algebras on a set X with respect to EMV-morphisms. If X is finite, then a free EMV-algebra on X is termwise equivalent to the free MV-algebra on X. For an infinite set X, the same is true introducing a so-called weakly free EMV-algebra.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA15-15286S" target="_blank" >GA15-15286S: Algebraic, many-valued and quantum structures for uncertainty modelling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SOFT COMPUTING
ISSN
1432-7643
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
22
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
7519-7537
UT code for WoS article
000448418300017
EID of the result in the Scopus database
2-s2.0-85045039985