Geodesics and almost geodesics curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73590354" target="_blank" >RIV/61989592:15310/18:73590354 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs00025-018-0917-3" target="_blank" >https://link.springer.com/article/10.1007%2Fs00025-018-0917-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00025-018-0917-3" target="_blank" >10.1007/s00025-018-0917-3</a>
Alternative languages
Result language
angličtina
Original language name
Geodesics and almost geodesics curves
Original language description
We determine in Rn the form of curves C for which also any image under an (n − 1)-dimensional algebraic torus is a geodesic or an almost geodesic with respect to an affine connections ∇ with constant coefficients and calculate explicitly the components of ∇. In this paper we consider the special case for the connection ∇ when any curve from a set of images of C is almost geodesic with respect to ∇.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Results in Mathematics
ISSN
1422-6383
e-ISSN
—
Volume of the periodical
74
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
"UNSP154-1"-"UNSP154-12"
UT code for WoS article
000451469900005
EID of the result in the Scopus database
2-s2.0-85056416841