On preservation of the Riemann tensor with respect to some mappings of affinely connected space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73590370" target="_blank" >RIV/61989592:15310/18:73590370 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.3103%2FS1066369X18090013.pdf" target="_blank" >https://link.springer.com/content/pdf/10.3103%2FS1066369X18090013.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3103/S1066369X18090013" target="_blank" >10.3103/S1066369X18090013</a>
Alternative languages
Result language
angličtina
Original language name
On preservation of the Riemann tensor with respect to some mappings of affinely connected space
Original language description
This paper is devoted to geodesic and almost geodesic mappings of spaces with affine connection. We find conditions which ensure that the Riemann tensor is an invariant geometric object with respect to the studied mappings. In this work we present an example of the non-trivial geodesic mappings between the flat spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Russian Mathematics
ISSN
1066-369X
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
1-6
UT code for WoS article
000443877800001
EID of the result in the Scopus database
2-s2.0-85052830310