All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On preservation of the Riemann tensor with respect to some mappings of affinely connected space

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73590370" target="_blank" >RIV/61989592:15310/18:73590370 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.3103%2FS1066369X18090013.pdf" target="_blank" >https://link.springer.com/content/pdf/10.3103%2FS1066369X18090013.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3103/S1066369X18090013" target="_blank" >10.3103/S1066369X18090013</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On preservation of the Riemann tensor with respect to some mappings of affinely connected space

  • Original language description

    This paper is devoted to geodesic and almost geodesic mappings of spaces with affine connection. We find conditions which ensure that the Riemann tensor is an invariant geometric object with respect to the studied mappings. In this work we present an example of the non-trivial geodesic mappings between the flat spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Russian Mathematics

  • ISSN

    1066-369X

  • e-ISSN

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    1-6

  • UT code for WoS article

    000443877800001

  • EID of the result in the Scopus database

    2-s2.0-85052830310