All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73591832" target="_blank" >RIV/61989592:15310/18:73591832 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007%2Fs00425-018-2858-1" target="_blank" >https://link.springer.com/article/10.1007%2Fs00425-018-2858-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00425-018-2858-1" target="_blank" >10.1007/s00425-018-2858-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews

  • Original language description

    Resistant Lactuca spp. genotypes can efficiently modulate levels of S-nitrosothiols as reactive nitrogen species derived from nitric oxide in their defence mechanism against invading biotrophic pathogens including lettuce downy mildew. S-Nitrosylation belongs to principal signalling pathways of nitric oxide in plant development and stress responses. Protein S-nitrosylation is regulated by S-nitrosoglutathione reductase (GSNOR) as a key catabolic enzyme of S-nitrosoglutathione (GSNO), the major intracellular S-nitrosothiol. GSNOR expression, level and activity were studied in leaves of selected genotypes of lettuce (Lactuca sativa) and wild Lactuca spp. during interactions with biotrophic mildews, Bremia lactucae (lettuce downy mildew), Golovinomyces cichoracearum (lettuce powdery mildew) and non-pathogen Pseudoidium neolycopersici (tomato powdery mildew) during 168 h post inoculation (hpi). GSNOR expression was increased in all genotypes both in the early phase at 6 hpi and later phase at 72 hpi, with a high increase observed in L. sativa UCDM2 responses to all three pathogens. GSNOR protein also showed two-phase increase, with highest changes in L. virosa-B. lactucae and L. sativa cv. UCDM2-G. cichoracearum pathosystems, whereas P. neolycopersici induced GSNOR protein at 72 hpi in all genotypes. Similarly, a general pattern of modulated GSNOR activities in response to biotrophic mildews involves a two-phase increase at 6 and 72 hpi. Lettuce downy mildew infection caused GSNOR activity slightly increased only in resistant L. saligna and L. virosa genotypes; however, all genotypes showed increased GSNOR activity both at 6 and 72 hpi by lettuce powdery mildew. We observed GSNOR-mediated decrease of S-nitrosothiols as a general feature of Lactuca spp. response to mildew infection, which was also confirmed by immunohistochemical detection of GSNOR and GSNO in infected plant tissues. Our results demonstrate that GSNOR is differentially modulated in interactions of susceptible and resistant Lactuca spp. genotypes with fungal mildews and uncover the role of S-nitrosylation in molecular mechanisms of plant responses to biotrophic pathogens.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    <a href="/en/project/GAP501%2F12%2F0590" target="_blank" >GAP501/12/0590: Characterisation of processes involved in induction of plant resistance to pathogens using elicitins with altered ability to trigger defence reaction</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLANTA

  • ISSN

    0032-0935

  • e-ISSN

  • Volume of the periodical

    247

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    1203-1215

  • UT code for WoS article

    000429412900013

  • EID of the result in the Scopus database

    2-s2.0-85041528834