On canonical F-planar mappings of spaces with affine connection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597297" target="_blank" >RIV/61989592:15310/19:73597297 - isvavai.cz</a>
Result on the web
<a href="https://www.pmf.ni.ac.rs/filomat-content/2019/33-4/33-4-32-10522.pdf" target="_blank" >https://www.pmf.ni.ac.rs/filomat-content/2019/33-4/33-4-32-10522.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1904273B" target="_blank" >10.2298/FIL1904273B</a>
Alternative languages
Result language
angličtina
Original language name
On canonical F-planar mappings of spaces with affine connection
Original language description
In this paper we study the theory of F-planar mappings of spaces with affine connection. We obtained condition, which preserved the curvature tensor. We also studied canonical F-planar mappings of space with affine connection onto symmetric spaces. In this case, the main equations have the partial differential Cauchy type form in covariant derivatives. We got the set of substantial real parameters on which depends the general solution of that PDE’s system.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Filomat
ISSN
0354-5180
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
4
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
6
Pages from-to
"1273–1278"
UT code for WoS article
000496191800033
EID of the result in the Scopus database
2-s2.0-85078273270