Recurrent equiaffine projective Euclidean spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597300" target="_blank" >RIV/61989592:15310/19:73597300 - isvavai.cz</a>
Result on the web
<a href="https://www.pmf.ni.ac.rs/filomat-content/2019/33-4/33-4-6-9130.pdf" target="_blank" >https://www.pmf.ni.ac.rs/filomat-content/2019/33-4/33-4-6-9130.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1904053S" target="_blank" >10.2298/FIL1904053S</a>
Alternative languages
Result language
angličtina
Original language name
Recurrent equiaffine projective Euclidean spaces
Original language description
In this paper, we study n-dimensional recurrent equiaffine projective Euclidean manifolds, i.e. manifolds with absolute recurrent curvature tensor, which admit geodesic mappings onto Euclidean space and they are equiaffine (where was obtained the symmetric Ricci tensor). We obtained main conditions of recurrent projective Euclidean spaces and constructed their examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Filomat
ISSN
0354-5180
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
4
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
6
Pages from-to
"1053–1058"
UT code for WoS article
000496191800007
EID of the result in the Scopus database
2-s2.0-85078244018