On the Sampson Laplacian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597301" target="_blank" >RIV/61989592:15310/19:73597301 - isvavai.cz</a>
Result on the web
<a href="http://www.doiserbia.nb.rs/img/doi/0354-5180/2019/0354-51801904059S.pdf" target="_blank" >http://www.doiserbia.nb.rs/img/doi/0354-5180/2019/0354-51801904059S.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1904059S" target="_blank" >10.2298/FIL1904059S</a>
Alternative languages
Result language
angličtina
Original language name
On the Sampson Laplacian
Original language description
In the present paper we consider the little-known Sampson operator that is strongly elliptic and self-adjoint second order differential operator acting on covariant symmetric tensors on Riemannian manifolds. First of all, we review the results on this operator. Then we consider the properties of the Sampson operator acting on one-forms and symmetric two-tensors. We study this operator using the analytical method, due to Bochner, of proving vanishing theorems for the null space of a Laplace operator admitting a Weitzenbock decomposition. Further we estimate operator’s lowest eigenvalue.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Filomat
ISSN
0354-5180
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
4
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
12
Pages from-to
"1059–1070"
UT code for WoS article
000496191800008
EID of the result in the Scopus database
2-s2.0-85078318407