All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Compressible Nonlinearly Viscous Fluids: Asymptotic Analysis in a 3D Curved Domain

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597325" target="_blank" >RIV/61989592:15310/19:73597325 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007%2Fs00021-019-0412-y.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs00021-019-0412-y.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-019-0412-y" target="_blank" >10.1007/s00021-019-0412-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Compressible Nonlinearly Viscous Fluids: Asymptotic Analysis in a 3D Curved Domain

  • Original language description

    Concerning three-dimensional models, an analytical solution is often impossible and numerical solution can be unduly complicated. Thus, we need to simplify three-dimensional models, when possible, prior to solving the problem. Recently, several lower-dimensional models for dynamics of compressible fluids were rigorously derived from three-dimensional models. We extend the current framework by dealing with nonsteady Navier–Stokes equations for compressible nonlinearly viscous fluids in a deformed three-dimensional domain. The deformation of the domain introduced new difficulties in the asymptotic analysis, because the deformation affects the limit equations in a non-trivial way.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    27

  • Pages from-to

    "UNSP13-1"-"UNSP13-27"

  • UT code for WoS article

    000457990300001

  • EID of the result in the Scopus database

    2-s2.0-85061045060