All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Self-propelled motion in a viscous compressible fluid –unbounded domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00456889" target="_blank" >RIV/67985840:_____/16:00456889 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1142/S0218202516500123" target="_blank" >http://dx.doi.org/10.1142/S0218202516500123</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218202516500123" target="_blank" >10.1142/S0218202516500123</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Self-propelled motion in a viscous compressible fluid –unbounded domains

  • Original language description

    In this paper, we study the self-propelled motion of a single deformable body in a viscous compressible fluid which occupies whole three-dimensional Euclidean space. The considered governing system for the fluid is the isentropic compressible Navier–Stokes equation. The main result of this paper is the existence of a weak solution on a time interval (0,+infty).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Models and Methods in Applied Sciences

  • ISSN

    0218-2025

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    17

  • Pages from-to

    627-643

  • UT code for WoS article

    000371337000001

  • EID of the result in the Scopus database

    2-s2.0-84959554401