On the vanishing rigid body problem in a viscous compressible fluid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00564462" target="_blank" >RIV/67985840:_____/23:00564462 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jde.2022.11.023" target="_blank" >https://doi.org/10.1016/j.jde.2022.11.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2022.11.023" target="_blank" >10.1016/j.jde.2022.11.023</a>
Alternative languages
Result language
angličtina
Original language name
On the vanishing rigid body problem in a viscous compressible fluid
Original language description
In this paper we study the interaction of a small rigid body in a viscous compressible fluid. The system occupies a bounded three dimensional domain. The object it allowed to freely move and its dynamics follows the Newton's laws. We show that as the size of the object converges to zero the system fluid plus rigid body converges to the compressible Navier-Stokes system under some mild lower bound on the mass and the inertia momentum. It is a first result of homogenization in the case of fluid-structure interaction in the compressible situation. As a corollary we slightly improved the result on the influence of a vanishing obstacle in a compressible fluid for gama >=6.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-04243S" target="_blank" >GA19-04243S: Partial differential equations in mechanics and thermodynamics of fluids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
345
Issue of the periodical within the volume
February 5
Country of publishing house
US - UNITED STATES
Number of pages
33
Pages from-to
45-77
UT code for WoS article
000897817400002
EID of the result in the Scopus database
2-s2.0-85142387191