Coexistence of Random Subharmonic Solutions of Random Impulsive Differential Equations and Inclusions on a Circle
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73602188" target="_blank" >RIV/61989592:15310/20:73602188 - isvavai.cz</a>
Result on the web
<a href="https://obd.upol.cz/id_publ/333182074" target="_blank" >https://obd.upol.cz/id_publ/333182074</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218127420501527" target="_blank" >10.1142/S0218127420501527</a>
Alternative languages
Result language
angličtina
Original language name
Coexistence of Random Subharmonic Solutions of Random Impulsive Differential Equations and Inclusions on a Circle
Original language description
The coexistence of random periodic solutions with various periods (i.e. subharmonics) is proved to random differential equations on a circle with random impulses of all integer orders. One of the theorems is also extended to random differential inclusions on a circle with multivalued deterministic impulses. These results can be roughly characterized as a further application of the randomized Sharkovsky type theorems to random impulsive differential equations and inclusions on a circle.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
ISSN
0218-1274
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
10
Country of publishing house
SG - SINGAPORE
Number of pages
11
Pages from-to
"2050152-1"-"2050152-11"
UT code for WoS article
000567774200015
EID of the result in the Scopus database
2-s2.0-85090821410