All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Colloidal maghemite nanoparticles with oxyhydroxide-like interface and chiroptical properties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73602518" target="_blank" >RIV/61989592:15310/20:73602518 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0169433220323242" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169433220323242</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apsusc.2020.147567" target="_blank" >10.1016/j.apsusc.2020.147567</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Colloidal maghemite nanoparticles with oxyhydroxide-like interface and chiroptical properties

  • Original language description

    Magnetic nanoparticles, mainly constituted of magnetite and maghemite, are widely used for environmental, biomedical and biotechnological applications. Herein, the synthesis and properties of maghemite nanoparticles characterized by chiroptical activity, representing an unprecedented feature for iron oxide nanoparticles, is described in detail. Among nanosized iron oxides, these maghemite nanoparticles stand out for the excellent colloidal stability in water and the witnessed ability to specifically bind selected molecules. The surface properties of nanoparticles were probed with As-III and As-V oxyacids, studied by x-ray photoelectron spectroscopy and correlated to circular dichroism. The dichroic signal of nanoparticles was differently influenced by the coordination of ligands. Crystalline vacancies on the nanomaterial surface were identified as the chiral centers responsible of the dichroic behavior and the selectivity toward ligands. The latter was correlated with the ability of restructuring the nanomaterial at the crystal truncation. Furthermore, surface binding sites emerged for bearing labile coordination water in analogy with iron oxyhydroxides. The present report, besides enriching the colloidal chemistry of iron oxide based nanomaterials, can stimulate further research on inorganic systems expressing intrinsic chiral properties.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/EF17_048%2F0007323" target="_blank" >EF17_048/0007323: Development of pre-applied research in nanotechnogy and biotechnology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APPLIED SURFACE SCIENCE

  • ISSN

    0169-4332

  • e-ISSN

  • Volume of the periodical

    534

  • Issue of the periodical within the volume

    DEC

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    "147567-1"-"147567-11"

  • UT code for WoS article

    000582367700015

  • EID of the result in the Scopus database

    2-s2.0-85089807593