Directly decomposable ideals and congruence kernels of commutative semirings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603179" target="_blank" >RIV/61989592:15310/20:73603179 - isvavai.cz</a>
Result on the web
<a href="http://mat76.mat.uni-miskolc.hu/mnotes/article/2819" target="_blank" >http://mat76.mat.uni-miskolc.hu/mnotes/article/2819</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18514/MMN.2020.2819" target="_blank" >10.18514/MMN.2020.2819</a>
Alternative languages
Result language
angličtina
Original language name
Directly decomposable ideals and congruence kernels of commutative semirings
Original language description
As pointed out in the monographs [5, 6] on semirings, ideals play an important role despite the fact that they need not be congruence kernels as in the case of rings. Hence, having two commutative semirings S-1 and S-2, one can ask whether an ideal I of their direct product S = S-1 x S-2 can be expressed in the form I-1 x I-2 where I-j is an ideal of S-j for j = 1, 2. Of course, the converse is elementary, namely if I-j is an ideal of S-j for j = 1, 2 then I-1 x I-2 is an ideal of S-1 x S-2. Having a congruence Theta on a commutative semiring S, its 0-class is an ideal of S, but not every ideal is of this form. Hence, the lattice IdS of all ideals of S and the lattice KerS of all congruence kernels (i.e. 0-classes of congruences) of S need not be equal. Furthermore, we show that the mapping Theta bar right arrow [0]Theta need not be a homomorphism from ConS onto KerS. Moreover, the question arises when a congruence kernel of the direct product S-1 x S-2 of two commutative semirings can be expressed as a direct product of the corresponding kernels on the factors. In the paper we present necessary and sufficient conditions for such direct decompositions both for ideals and for congruence kernels of commutative semirings. We also provide sufficient conditions for varieties of commutative semirings to have directly decomposable kernels.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Miskolc Mathematical Notes
ISSN
1787-2405
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
13
Pages from-to
"113 "- 125
UT code for WoS article
000541509200008
EID of the result in the Scopus database
2-s2.0-85089540848