Relatively residuated lattices and posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603279" target="_blank" >RIV/61989592:15310/20:73603279 - isvavai.cz</a>
Result on the web
<a href="https://obd.upol.cz/id_publ/333183165" target="_blank" >https://obd.upol.cz/id_publ/333183165</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ms-2017-0347" target="_blank" >10.1515/ms-2017-0347</a>
Alternative languages
Result language
angličtina
Original language name
Relatively residuated lattices and posets
Original language description
It is known that every relatively pseudocomplemented lattice is residuated and, moreover, it is distributive. Unfortunately, non-distributive lattices with a unary operation satisfying properties similar to relative pseudocomplementation cannot be converted in residuated ones. The aim of this paper is to introduce a more general concept of a relatively residuated lattice in such a way that also non-modular sectionally pseudocomplemented lattices are included. We derive several properties of relatively residuated lattices which are similar to those known for residuated ones and extend our results to posets.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
—
Volume of the periodical
70
Issue of the periodical within the volume
2
Country of publishing house
SK - SLOVAKIA
Number of pages
12
Pages from-to
239-250
UT code for WoS article
000519766200001
EID of the result in the Scopus database
2-s2.0-85075903515