Implication in finite posets with pseuducomplemented sections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73613053" target="_blank" >RIV/61989592:15310/22:73613053 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00500-022-07052-5" target="_blank" >https://link.springer.com/article/10.1007/s00500-022-07052-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-022-07052-5" target="_blank" >10.1007/s00500-022-07052-5</a>
Alternative languages
Result language
angličtina
Original language name
Implication in finite posets with pseuducomplemented sections
Original language description
It is known that relatively pseudocomplemented lattices serve as an algebraic semantics of intuitionistic logic. We extend here the concept of relative pseudocomplementation to non-distributive lattices and then to posets with top element where everx section is pseudocomplemented. We show that such a poset can be considered as an algebraic semantics for certain kind of more general intuitionistic logic. We introduce an "unsharp" version of implication to which can be adjoint a new "unsharp" version of conjunction such that these operators complete the poset in "unsharp" residuated poset.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SOFT COMPUTING
ISSN
1432-7643
e-ISSN
1433-7479
Volume of the periodical
26
Issue of the periodical within the volume
13
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
5945-5953
UT code for WoS article
000784863300006
EID of the result in the Scopus database
2-s2.0-85129677807