Algebras describing pseudocomplemented, relatively pseudocomplemented and sectionally pseudocomplemented posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609272" target="_blank" >RIV/61989592:15310/21:73609272 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2073-8994/13/5/753/htm" target="_blank" >https://www.mdpi.com/2073-8994/13/5/753/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym13050753" target="_blank" >10.3390/sym13050753</a>
Alternative languages
Result language
angličtina
Original language name
Algebras describing pseudocomplemented, relatively pseudocomplemented and sectionally pseudocomplemented posets
Original language description
In order to be able to use methods of universal algebra for investigating posets, we assigned to every pseudocomplemented poset, to every relatively pseudocomplemented poset and to every sectionally pseudocomplemented poset, a certain algebra satisfying certain identities and implications. We show that the assigned algebra fully characterize the given corresponding poset. The assigned algebras satisfy strong congruence properties which can be transferred back to the posets.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry-Basel
ISSN
2073-8994
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
5
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
"753-1"-"753-17"
UT code for WoS article
000654569400001
EID of the result in the Scopus database
2-s2.0-85105725604