All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Algebraic Aspects of Relatively Pseudocomplemented Posets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603744" target="_blank" >RIV/61989592:15310/20:73603744 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/20:00114462

  • Result on the web

    <a href="https://link.springer.com/article/10.1007%2Fs11083-019-09488-1" target="_blank" >https://link.springer.com/article/10.1007%2Fs11083-019-09488-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11083-019-09488-1" target="_blank" >10.1007/s11083-019-09488-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Algebraic Aspects of Relatively Pseudocomplemented Posets

  • Original language description

    In Chajda and Langer (Math. Bohem. 143, 89-97, 2018) the concept of relative pseudocomplementation was extended to posets. We introduce the concept of a congruence in a relatively pseudocomplemented poset within the framework of Hilbert algebras and we study under which conditions the quotient structure is a relatively pseudocomplemented poset again. This problem is solved e.g. for finite or linearly ordered posets. We characterize relative pseudocomplementation by means of so-called L-identities. We investigate the category of bounded relatively pseudocomplemented posets. Finally, we derive certain quadruples which characterize bounded Hilbert algebras and bounded relatively pseudocomplemented posets up to isomorphism using Glivenko equivalence and implicative semilattice envelope of Hilbert algebras.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS

  • ISSN

    0167-8094

  • e-ISSN

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    29

  • Pages from-to

    1-29

  • UT code for WoS article

    000535144300001

  • EID of the result in the Scopus database

    2-s2.0-85065248589