Algebraic Aspects of Relatively Pseudocomplemented Posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603744" target="_blank" >RIV/61989592:15310/20:73603744 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/20:00114462
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs11083-019-09488-1" target="_blank" >https://link.springer.com/article/10.1007%2Fs11083-019-09488-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11083-019-09488-1" target="_blank" >10.1007/s11083-019-09488-1</a>
Alternative languages
Result language
angličtina
Original language name
Algebraic Aspects of Relatively Pseudocomplemented Posets
Original language description
In Chajda and Langer (Math. Bohem. 143, 89-97, 2018) the concept of relative pseudocomplementation was extended to posets. We introduce the concept of a congruence in a relatively pseudocomplemented poset within the framework of Hilbert algebras and we study under which conditions the quotient structure is a relatively pseudocomplemented poset again. This problem is solved e.g. for finite or linearly ordered posets. We characterize relative pseudocomplementation by means of so-called L-identities. We investigate the category of bounded relatively pseudocomplemented posets. Finally, we derive certain quadruples which characterize bounded Hilbert algebras and bounded relatively pseudocomplemented posets up to isomorphism using Glivenko equivalence and implicative semilattice envelope of Hilbert algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS
ISSN
0167-8094
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
29
Pages from-to
1-29
UT code for WoS article
000535144300001
EID of the result in the Scopus database
2-s2.0-85065248589