All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Direct Observation of Photoinduced Higher Oxidation States at a Semiconductor/Electrocatalyst Junction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603306" target="_blank" >RIV/61989592:15310/20:73603306 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/full/10.1021/acscatal.0c02789" target="_blank" >https://pubs.acs.org/doi/full/10.1021/acscatal.0c02789</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acscatal.0c02789" target="_blank" >10.1021/acscatal.0c02789</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Direct Observation of Photoinduced Higher Oxidation States at a Semiconductor/Electrocatalyst Junction

  • Original language description

    Photoelectrochemical (PEC) water splitting devices using semiconductors and electrocatalysts rely on heterogeneous interfaces that drive charge separation, thus determining potential gradients that dictate the reaction efficiency. The PEC potential of the electrocatalyst depends on the chemical oxidation state of forming elements, which may strongly vary under the photoinduced charge flow. However, element-sensitive, real-time measurements of the oxidation state of the electrocatalyst are not generally possible using conventional X-ray absorption techniques. Here, we show that fixed-energy X-ray absorption voltammetry and chronoamperometry, which measure the X-ray absorption coefficient variations along with photocurrent, can follow in real time the redox kinetics of electrocatalysts. To demonstrate the validity, we investigate hematite (alpha-Fe2O3) photoanodes covered with a nickel hydroxide electrocatalyst and show that it is fully oxidized by photogenerated holes to nickel oxyhydroxide with Ni reaching a higher oxidation state (Ni-IV) than that observed under electrocatalytic oxygen evolution in dark conditions. Highly oxidized Ni results from charge accumulation in the overlayer and can be observed only in the case of thick layers (with low PEC performance). On the other hand, the average oxidation state of Ni reaches lower values, under operative conditions, for very thin layers, resulting in high PEC activity. We complete our study by presenting PEC activity and impedance spectroscopy analysis using different thicknesses of the electrocatalyst, thus giving a detailed picture of the multiple and complex charge transfer processes occurring at a semiconductor/electrocatalyst junction.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000416" target="_blank" >EF15_003/0000416: Advanced Hybrid Nanostructures for Renewable Energy Applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Catalysis

  • ISSN

    2155-5435

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    18

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    10476-10487

  • UT code for WoS article

    000574920200017

  • EID of the result in the Scopus database

    2-s2.0-85095420787