Multiple anti-periodic solutions of implicit differential inclusions on tori
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73603351" target="_blank" >RIV/61989592:15310/21:73603351 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022039620306379" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039620306379</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2020.11.049" target="_blank" >10.1016/j.jde.2020.11.049</a>
Alternative languages
Result language
angličtina
Original language name
Multiple anti-periodic solutions of implicit differential inclusions on tori
Original language description
We give a lower estimate of the number of anti-periodic solutions of implicit differential inclusions on tori. Our approach is based on the application of the topological essential fixed point theory, jointly with the Nielsen theory for multivalued admissible maps. Since one of the conditions is rather technical (zero topological dimension of a fixed point set), some simple illustrative examples to the main theorem are supplied. In the single-valued case of implicit differential equations, relevant arguments are still discussed in concluding remarks.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
273
Issue of the periodical within the volume
FEB
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
1-13
UT code for WoS article
000600558400001
EID of the result in the Scopus database
2-s2.0-85138374241