Canonical almost geodesic mappings of the first type of spaces with affine connection onto generalized 2-Ricci-symmetric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73607707" target="_blank" >RIV/61989592:15310/21:73607707 - isvavai.cz</a>
Result on the web
<a href="https://obd.upol.cz/id_publ/333187593" target="_blank" >https://obd.upol.cz/id_publ/333187593</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7546/giq-22-2021-78-87" target="_blank" >10.7546/giq-22-2021-78-87</a>
Alternative languages
Result language
angličtina
Original language name
Canonical almost geodesic mappings of the first type of spaces with affine connection onto generalized 2-Ricci-symmetric spaces
Original language description
In the paper we consider almost geodesic mappings of the first type of spaces with affine connections onto generalized 2-Ricci-symmetric spaces. The main equations for the mappings are obtained as a closed system of linear differential equations of Cauchy type in the covariant derivatives. The obtained result extends an amount of research produced by Sinyukov, Berezovski and Mikeš.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Geometry, Integrability and Quantization
ISSN
1314-3247
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
SI
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
78-87
UT code for WoS article
000696773000005
EID of the result in the Scopus database
2-s2.0-85108501957