Comparison of machine learning approach to other commonly used unfolding methods
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73607798" target="_blank" >RIV/61989592:15310/21:73607798 - isvavai.cz</a>
Result on the web
<a href="https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=52&page=863" target="_blank" >https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=52&page=863</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5506/APhysPolB.52.863" target="_blank" >10.5506/APhysPolB.52.863</a>
Alternative languages
Result language
angličtina
Original language name
Comparison of machine learning approach to other commonly used unfolding methods
Original language description
Unfolding in high energy physics represents the correction of measured spectra in data for the finite detector efficiency, acceptance, and resolution from the detector to particle level. Recent machine learning approaches provide unfolding on an event-by-event basis allowing to simultaneously unfold a large number of variables and thus to cover a wider region of the features that affect detector response. This study focuses on a simple comparison of commonly used methods in RooUnfold package to the machine learning package OmniFold.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
<a href="/en/project/GA19-21484S" target="_blank" >GA19-21484S: Novel techniques for boosted top quarks reconstruction for new physics searches at LHC</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ACTA PHYSICA POLONICA B
ISBN
—
ISSN
0587-4254
e-ISSN
1509-5770
Number of pages
7
Pages from-to
863-869
Publisher name
Jagiellonian University Press
Place of publication
Krakow
Event location
Krakow, POLAND
Event date
Jan 7, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000677592400002