Convolutional neural networks for signal detection in real LIGO data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00587826" target="_blank" >RIV/67985815:_____/24:00587826 - isvavai.cz</a>
Result on the web
<a href="https://hdl.handle.net/11104/0354909" target="_blank" >https://hdl.handle.net/11104/0354909</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.110.024024" target="_blank" >10.1103/PhysRevD.110.024024</a>
Alternative languages
Result language
angličtina
Original language name
Convolutional neural networks for signal detection in real LIGO data
Original language description
Searching the data of gravitational-wave detectors for signals from compact binary mergers is a computationally demanding task. Recently, machine-learning algorithms have been proposed to address current and future challenges. However, the results of these publications often differ greatly due to differing choices in the evaluation procedure. The Machine Learning Gravitational-Wave Search Challenge was organized to resolve these issues and produce a unified framework for machine-learning search evaluation. Six teams submitted contributions, four of which are based on machine-learning methods, and two are state-of-the-art production analyses. This paper describes the submission from the team TPI FSU Jena and its updated variant. We also apply our algorithm to real O3b data and recover the relevant events of the GWTC-3 catalog.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Volume of the periodical
110
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
024024
UT code for WoS article
001266959300001
EID of the result in the Scopus database
2-s2.0-85198606725