Image Matching across Wide Baselines: From Paper to Practice
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00342509" target="_blank" >RIV/68407700:21230/21:00342509 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11263-020-01385-0" target="_blank" >https://doi.org/10.1007/s11263-020-01385-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11263-020-01385-0" target="_blank" >10.1007/s11263-020-01385-0</a>
Alternative languages
Result language
angličtina
Original language name
Image Matching across Wide Baselines: From Paper to Practice
Original language description
We introduce a comprehensive benchmark for local features and robust estimation algorithms, focusing on the downstream task -- the accuracy of the reconstructed camera pose -- as our primary metric. Our pipeline's modular structure allows easy integration, configuration, and combination of different methods and heuristics. This is demonstrated by embedding dozens of popular algorithms and evaluating them, from seminal works to the cutting edge of machine learning research. We show that with proper settings, classical solutions may still outperform the perceived state of the art. Besides establishing the actual state of the art, the conducted experiments reveal unexpected properties of Structure from Motion (SfM) pipelines that can help improve their performance, for both algorithmic and learned methods. Data and code are online https://github.com/team-yi-ubc/image-matching-benchmark providing an easy-to-use and flexible framework for the benchmarking of local features and robust estimation methods, both alongside and against top-performing methods. This work provides a basis for the Image Matching Challenge https://vision.uvic.ca/image-matching-challenge/.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Computer Vision
ISSN
0920-5691
e-ISSN
1573-1405
Volume of the periodical
129
Issue of the periodical within the volume
February
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
31
Pages from-to
517-547
UT code for WoS article
000577443300001
EID of the result in the Scopus database
2-s2.0-85092220167