All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Patch2Pix: Epipolar-Guided Pixel-Level Correspondences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00356122" target="_blank" >RIV/68407700:21730/21:00356122 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/CVPR46437.2021.00464" target="_blank" >https://doi.org/10.1109/CVPR46437.2021.00464</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR46437.2021.00464" target="_blank" >10.1109/CVPR46437.2021.00464</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Patch2Pix: Epipolar-Guided Pixel-Level Correspondences

  • Original language description

    The classical matching pipeline used for visual localization typically involves three steps: (i) local feature detection and description, (ii) feature matching, and (iii) outlier rejection. Recently emerged correspondence networks propose to perform those steps inside a single network but suffer from low matching resolution due to the memory bottle-neck. In this work, we propose a new perspective to estimate correspondences in a detect-to-refine manner, where we first predict patch-level match proposals and then refine them. We present Patch2Pix, a novel refinement network that refines match proposals by regressing pixel-level matches from the local regions defined by those proposals and jointly rejecting outlier matches with confidence scores. Patch2Pix is weakly supervised to learn correspondences that are consistent with the epipolar geometry of an input image pair. We show that our refinement network significantly improves the performance of correspondence networks on image matching, homography estimation, and localization tasks. In addition, we show that our learned refinement generalizes to fully-supervised methods without retraining, which leads us to state-of-the-art localization performance.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  • ISBN

    978-1-6654-4509-2

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    10

  • Pages from-to

    4667-4676

  • Publisher name

    IEEE Computer Society

  • Place of publication

    USA

  • Event location

    Nashville

  • Event date

    Jun 20, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000739917304084