Benchmarking Image Retrieval for Visual Localization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00347058" target="_blank" >RIV/68407700:21730/20:00347058 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/3DV50981.2020.00058" target="_blank" >https://doi.org/10.1109/3DV50981.2020.00058</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/3DV50981.2020.00058" target="_blank" >10.1109/3DV50981.2020.00058</a>
Alternative languages
Result language
angličtina
Original language name
Benchmarking Image Retrieval for Visual Localization
Original language description
Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two tasks: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for these tasks. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes. However, robustness to viewpoint changes is not necessarily desirable in the context of visual localization. This paper focuses on understanding the role of image retrieval for multiple visual localization tasks. We introduce a benchmark setup and compare state-of-the-art retrieval representations on multiple datasets. We show that retrieval performance on classical landmark retrieval/recognition tasks correlates only for some but not all tasks to localization performance. This indicates a need for retrieval approaches specifically designed for localization tasks. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2020 International Conference on 3D Vision (3DV)
ISBN
978-1-7281-8128-8
ISSN
2378-3826
e-ISSN
2475-7888
Number of pages
12
Pages from-to
483-494
Publisher name
IEEE Computer Soc.
Place of publication
Los Alamitos, CA
Event location
Kyoto
Event date
Nov 25, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000653085200049