All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Back to the Feature: Learning Robust Camera Localization from Pixels to Pose

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00356128" target="_blank" >RIV/68407700:21730/21:00356128 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/CVPR46437.2021.00326" target="_blank" >https://doi.org/10.1109/CVPR46437.2021.00326</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR46437.2021.00326" target="_blank" >10.1109/CVPR46437.2021.00326</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Back to the Feature: Learning Robust Camera Localization from Pixels to Pose

  • Original language description

    Camera pose estimation in known scenes is a 3D geometry task recently tackled by multiple learning algorithms. Many regress precise geometric quantities, like poses or 3D points, from an input image. This either fails to generalize to new viewpoints or ties the model parameters to a specific scene. In this paper, we go Back to the Feature: we argue that deep networks should focus on learning robust and invariant visual features, while the geometric estimation should be left to principled algorithms. We introduce PixLoc, a scene-agnostic neural network that estimates an accurate 6-DoF pose from an image and a 3D model. Our approach is based on the direct alignment of multiscale deep features, casting camera localization as metric learning. PixLoc learns strong data priors by end-to-end training from pixels to pose and exhibits exceptional generalization to new scenes by separating model parameters and scene geometry. The system can localize in large environments given coarse pose priors but also improve the accuracy of sparse feature matching by jointly refining keypoints and poses with little overhead. The code will be publicly available at github.com/cvg/pixloc.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  • ISBN

    978-1-6654-4510-8

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    11

  • Pages from-to

    3246-3256

  • Publisher name

    IEEE Computer Society

  • Place of publication

    USA

  • Event location

    Nashville

  • Event date

    Jun 20, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000739917303044