All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reducing Negative Impact of Noise in Boolean Matrix Factorization with Association Rules

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73607821" target="_blank" >RIV/61989592:15310/21:73607821 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-74251-5_29" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-74251-5_29</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-74251-5_29" target="_blank" >10.1007/978-3-030-74251-5_29</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reducing Negative Impact of Noise in Boolean Matrix Factorization with Association Rules

  • Original language description

    Boolean matrix factorization (BMF) is a well-established data analytical method whose goal is to decompose a single large matrix into two, preferably smaller, matrices, carrying the same or similar information as the original matrix. In essence, it can be used to reduce data dimensionality and to provide fundamental insight into data. Existing algorithms are often negatively affected by the presence of noise in the data, which is a common case for real-world datasets. We present an initial study on an algorithm for approximate BMF that uses association rules in a novel way to identify possible noise. This allows us to suppress the impact of noise and improve the quality of results. Moreover, we show that association rules provide a suitable framework allowing the handling of noise in BMF in a justified way.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Data Analysis XIX

  • ISBN

    978-3-030-74250-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    365-375

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    online

  • Event date

    Apr 26, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000722625800029