d-Choquet integrals: Choquet integrals based on dissimilarities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609830" target="_blank" >RIV/61989592:15310/21:73609830 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011420301032" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011420301032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2020.03.019" target="_blank" >10.1016/j.fss.2020.03.019</a>
Alternative languages
Result language
angličtina
Original language name
d-Choquet integrals: Choquet integrals based on dissimilarities
Original language description
The paper introduces a new class of functions from [0, 1](n) to [0, n] called d-Choquet integrals. These functions are a generalization of the "standard" Choquet integral obtained by replacing the difference in the definition of the usual Choquet integral by a dissimilarity function. In particular, the class of all d-Choquet integrals encompasses the class of all "standard" Choquet integrals but the use of dissimilarities provides higher flexibility and generality. We show that some d-Choquet integrals are aggregation/preaggregation/averaging/functions and some of them are not. The conditions under which this happens are stated and other properties of the d-Choquet integrals are studied.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-06915S" target="_blank" >GA18-06915S: New approaches to aggregation operators in analysis and processing of data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
414
Issue of the periodical within the volume
JUL
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
27
Pages from-to
1-27
UT code for WoS article
000645901400001
EID of the result in the Scopus database
2-s2.0-85082796563