Fusion functions based discrete Choquet-like integrals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F16%3AA1701I31" target="_blank" >RIV/61988987:17610/16:A1701I31 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Fusion functions based discrete Choquet-like integrals
Original language description
In this paper, we generalize a formula for the discrete Choquet integral by replacing the standard product by a suitable fusion function. For the introduced fusion functions based discrete Choquet-like integrals we discuss and prove several properties and also show that our generalization leads to several new interesting functionals. We provide a complete characterization of the introduced functionals as aggregation functions. For n = 2, several new aggregation functions are obtained, and if symmetric capacities are considered, our approach yields new generalizations of OWA operators. If n > 2, the introduced functionals are aggregation functions only if they are Choquet integrals with respect to some distorted capacity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Operational Research
ISSN
0377-2217
e-ISSN
—
Volume of the periodical
252
Issue of the periodical within the volume
2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
601-609
UT code for WoS article
000372761200021
EID of the result in the Scopus database
2-s2.0-84969338119