All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Liouvillian spectral collapse in the Scully-Lamb laser model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609991" target="_blank" >RIV/61989592:15310/21:73609991 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.3.043197" target="_blank" >https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.3.043197</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevResearch.3.043197" target="_blank" >10.1103/PhysRevResearch.3.043197</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Liouvillian spectral collapse in the Scully-Lamb laser model

  • Original language description

    Phase transitions of thermal systems and the laser threshold were first connected more than forty years ago. Despite the nonequilibrium nature of the laser, the Landau theory of thermal phase transitions, applied directly to the Scully-Lamb laser model (SLLM), indicates that the laser threshold is a second-order phase transition, associated with a U(1) spontaneous symmetry breaking (SSB). To capture the genuine nonequilibrium phase transition of the SLLM (i.e., a single-mode laser without a saturable absorber), here we employ a quantum theory of dissipative phase transitions. Our results confirm that the U(1) SSB can occur at the lasing threshold but, in contrast to the Landau theory and semiclassical approximation, they signal that the SLLM &quot;fundamental&quot; transition is a different phenomenon, which we call Liouvillian spectral collapse; that is, the emergence of diabolic points of infinite degeneracy. By considering a generalized SLLM with additional dephasing, we witness a second-order phase transition, with a Liouvillian spectral collapse, but in the absence of symmetry breaking. Most surprisingly, the phase transition corresponds to the emergence of dynamical multistability even without SSB. Normally, bistability is suppressed by quantum fluctuations, while in this case, the very presence of quantum fluctuations enables bistability. This rather anomalous bistability, characterizing the truly dissipative and quantum origin of lasing, can be an experimental signature of our predictions, and we show that it is associated with an emergent dynamical hysteresis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review Research

  • ISSN

    2643-1564

  • e-ISSN

  • Volume of the periodical

    3

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    "043197-1"-"043197-18"

  • UT code for WoS article

    000734834100003

  • EID of the result in the Scopus database

    2-s2.0-85122540969