All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimized SQE atomic charges for peptides accessible via a web application

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73610418" target="_blank" >RIV/61989592:15310/21:73610418 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14740/21:00121862

  • Result on the web

    <a href="https://jcheminf.biomedcentral.com/track/pdf/10.1186/s13321-021-00528-w.pdf" target="_blank" >https://jcheminf.biomedcentral.com/track/pdf/10.1186/s13321-021-00528-w.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s13321-021-00528-w" target="_blank" >10.1186/s13321-021-00528-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimized SQE atomic charges for peptides accessible via a web application

  • Original language description

    Background: Partial atomic charges find many applications in computational chemistry, chemoinformatics, bioinformatics, and nanoscience. Currently, frequently used methods for charge calculation are the Electronegativity Equalization Method (EEM), Charge Equilibration method (QEq), and Extended QEq (EQeq). They all are fast, even for large molecules, but require empirical parameters. However, even these advanced methods have limitations-e.g., their application for peptides, proteins, and other macromolecules is problematic. An empirical charge calculation method that is promising for peptides and other macromolecular systems is the Split-charge Equilibration method (SQE) and its extension SQE+q0. Unfortunately, only one parameter set is available for these methods, and their implementation is not easily accessible. Results: In this article, we present for the first time an optimized guided minimization method (optGM) for the fast parameterization of empirical charge calculation methods and compare it with the currently available guided minimization (GDMIN) method. Then, we introduce a further extension to SQE, SQE+qp, adapted for peptide datasets, and compare it with the common approaches EEM, QEq EQeq, SQE, and SQE+q0. Finally, we integrate SQE and SQE+qp into the web application Atomic Charge Calculator II (ACC II), including several parameter sets. Conclusion: The main contribution of the article is that it makes SQE methods with their parameters accessible to the users via the ACC II web application (https://acc2.ncbr.muni.cz) and also via a command-line application. Furthermore, our improvement, SQE+qp, provides an excellent solution for peptide datasets. Additionally, optGM provides comparable parameters to GDMIN in a markedly shorter time. Therefore, optGM allows us to perform parameterizations for charge calculation methods with more parameters (e.g., SQE and its extensions) using large datasets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/LM2018131" target="_blank" >LM2018131: Czech National Infrastructure for Biological Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cheminformatics

  • ISSN

    1758-2946

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    "45-1"-"45-11"

  • UT code for WoS article

    000668532100001

  • EID of the result in the Scopus database

    2-s2.0-85108915985