All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On semigroup constructions induced by commuting retractions on a set

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73610439" target="_blank" >RIV/61989592:15310/21:73610439 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007/s00012-021-00755-0.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s00012-021-00755-0.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00012-021-00755-0" target="_blank" >10.1007/s00012-021-00755-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On semigroup constructions induced by commuting retractions on a set

  • Original language description

    If G = (G;.) is a semigroup, I is arbitrary set and lambda, rho: I -&gt; I are mappings satisfying the equalities lambda lambda = lambda, rho rho = rho and lambda rho = rho lambda then we define the semigroup (G(I), x) where (x x y)(i) := x(lambda i) center dot y(rho i). This construction gives rise to four covariant and two contravariant functors and constitute three adjoint situations. We apply this functors for finding representation theorems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ALGEBRA UNIVERSALIS

  • ISSN

    0002-5240

  • e-ISSN

  • Volume of the periodical

    82

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    25

  • Pages from-to

    "62-1"-"62-25"

  • UT code for WoS article

    000714589500001

  • EID of the result in the Scopus database

    2-s2.0-85118731862