A Contribution of Liouville-Type Theorems to the Geometry in the Large of Hadamard Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73613664" target="_blank" >RIV/61989592:15310/22:73613664 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/10/16/2880/htm" target="_blank" >https://www.mdpi.com/2227-7390/10/16/2880/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10162880" target="_blank" >10.3390/math10162880</a>
Alternative languages
Result language
angličtina
Original language name
A Contribution of Liouville-Type Theorems to the Geometry in the Large of Hadamard Manifolds
Original language description
A complete, simply connected Riemannian manifold of nonpositive sectional curvature is called a Hadamard manifold. In this article, we prove Liouville-type theorems for isometric and harmonic self-diffeomorphisms of Hadamard manifolds, as well as Liouville-type theorems for Killing–Yano, symmetric Killing and harmonic tensors on Hadamard manifolds.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Volume of the periodical
10
Issue of the periodical within the volume
16
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
"2880-1"-"2880-14"
UT code for WoS article
000845679500001
EID of the result in the Scopus database
2-s2.0-85137400682